Episodes
Episodes
Wednesday Mar 16, 2022
Single-Cell Technologies using Microfluidics (Ben Hindson, CSO of 10x Genomics)
Wednesday Mar 16, 2022
Wednesday Mar 16, 2022
In this episode of the Epigenetics Podcast, we caught up with Ben Hindson, Chief Scientific Officer at 10X Genomics, to talk about single-cell technologies using microfluidics.
Epigenetics has moved well past a simple understanding of a single epigenetic layer of control at genomic regions of interest, thanks to advances in many techniques and the application of “multiomics”. We can now analyze genome-wide histone modification patterns, transcription factor binding profiles, chromatin accessibility profiles, three-dimensional chromosomal conformation, and DNA methylation dynamics combined with transcriptomic analyses and associated analytical platforms.
Bulk Assays, like ATAC-Seq or ChIP, despite all their advantages, do not provide information about the chromatin states of individual subpopulations of cells within a sample. To identify chromatin features in heterogeneous populations, such as blood, pancreas, and brain, those analysis need to be performed at a single-cell level. 10X Genomics has been at the forefront of the movement into the single cell space and in this Episode we discuss this work with Ben Hindson, CSO of 10X genomics.
References
https://www.10xgenomics.com/products/single-cell-multiome-atac-plus-gene-expression
Spectrum of Innovation
Multiomic Epigenetic Analysis Turns Short Stories into Epic Tales
Single-Cell Multiome Service
Related Episodes
Epigenome-based Precision Medicine (Eleni Tomazou)
ATAC-Seq, scATAC-Seq and Chromatin Dynamics in Single-Cells
Investigating the Dynamics of Epigenetic Plasticity in Cancer with Single Cell Technologies (Céline Vallot)
Contact
Active Motif on Twitter
Epigenetics Podcast on Twitter
Active Motif on LinkedIn
Active Motif on Facebook
Email: podcast@activemotif.com
Thursday Mar 10, 2022
Epigenome-based Precision Medicine (Eleni Tomazou)
Thursday Mar 10, 2022
Thursday Mar 10, 2022
In this episode of the Epigenetics Podcast, we caught up with Eleni Tomazou from St. Anna Children's Cancer Research Institute in Vienna to talk about her work on Epigenome-based precision medicine.
The Tomazou lab studies Ewing sarcoma and the effects of Epigenetic factors on this disease. Ewing sarcoma is a type of cancer that affects bone and soft tissue of children and young adults, with a peak incidence at the age of 15. Ewing sarcoma is among the pediatric cancer types with the lowest survival rates and the development of novel therapies was obstructed by the limited understanding of the mechanisms behind the disease.
Work done in Eleni Tomazou's group identified an epigenetic signature of Ewing sarcoma which, ultimately, lead to the possibility to diagnose Ewing sarcoma from liquid biopsies. The team is now looking to find actionable targets like enhancers to develop therapies, finding biomarkers to enable disease monitoring, and to further characterize these tumors to decipher intra-tumor epigenetic heterogeneity and characterize the developmental stage of the cell of origin.
References
Tomazou, E. M., Sheffield, N. C., Schmidl, C., Schuster, M., Schönegger, A., Datlinger, P., Kubicek, S., Bock, C., & Kovar, H. (2015). Epigenome Mapping Reveals Distinct Modes of Gene Regulation and Widespread Enhancer Reprogramming by the Oncogenic Fusion Protein EWS-FLI1. Cell Reports, 10(7), 1082–1095. https://doi.org/10.1016/j.celrep.2015.01.042
Sheffield, N. C., Pierron, G., Klughammer, J., Datlinger, P., Schönegger, A., Schuster, M., Hadler, J., Surdez, D., Guillemot, D., Lapouble, E., Freneaux, P., Champigneulle, J., Bouvier, R., Walder, D., Ambros, I. M., Hutter, C., Sorz, E., Amaral, A. T., de Álava, E., … Tomazou, E. M. (2017). DNA methylation heterogeneity defines a disease spectrum in Ewing sarcoma. Nature Medicine, 23(3), 386–395. https://doi.org/10.1038/nm.4273
Terlecki-Zaniewicz, S., Humer, T., Eder, T., Schmoellerl, J., Heyes, E., Manhart, G., Kuchynka, N., Parapatics, K., Liberante, F. G., Müller, A. C., Tomazou, E. M., & Grebien, F. (2021). Biomolecular condensation of NUP98 fusion proteins drives leukemogenic gene expression. Nature Structural & Molecular Biology, 28(2), 190–201. https://doi.org/10.1038/s41594-020-00550-w
Peneder, P., Stütz, A. M., Surdez, D., Krumbholz, M., Semper, S., Chicard, M., Sheffield, N. C., Pierron, G., Lapouble, E., Tötzl, M., Ergüner, B., Barreca, D., Rendeiro, A. F., Agaimy, A., Boztug, H., Engstler, G., Dworzak, M., Bernkopf, M., Taschner-Mandl, S., … Tomazou, E. M. (2021). Multimodal analysis of cell-free DNA whole-genome sequencing for pediatric cancers with low mutational burden. Nature Communications, 12(1), 3230. https://doi.org/10.1038/s41467-021-23445-w
Related Episodes
Epigenomics (Henk Stunnenberg)
Targeting COMPASS to Cure Childhood Leukemia (Ali Shilatifard)
Cancer and Epigenetics (David Jones)
Contact
Active Motif on Twitter
Epigenetics Podcast on Twitter
Active Motif on LinkedIn
Active Motif on Facebook
Email: podcast@activemotif.com
Thursday Feb 24, 2022
Epigenetics and Epitranscriptomics in Cancer (Manel Esteller)
Thursday Feb 24, 2022
Thursday Feb 24, 2022
In this episode of the Epigenetics Podcast, we caught up with Manel Esteller, Director of the Josep Carreras Leukemia Research Institute to talk about his work on Epigenetics and Epitranscriptomics in Cancer.
The focus of Manel Esteller's research career and the focus of his current team is to characterize the epigenome and epitranscriptome of cancer cells in comparison to healthy cells, and their interplay. Ultimately, their goal is to use this knowledge to develop new therapies for cancer. Key achievements from the Esteller lab began with the discovery of the first miRNA that undergoes specific cancer-methylation associated silencing. The team further identified many more miRNAs that also play a role in cancer. Next to miRNAs, Manel Esteller studied the influence of lncRNAs, enhancers and DNA methylation on cancer development and progression, insights that may be used to develop cancer biomarkers and potential treatments.
References
Guil, S., Soler, M., Portela, A., Carrère, J., Fonalleras, E., Gómez, A., Villanueva, A., & Esteller, M. (2012). Intronic RNAs mediate EZH2 regulation of epigenetic targets. Nature Structural & Molecular Biology, 19(7), 664–670. https://doi.org/10.1038/nsmb.2315
Vizoso, M., Ferreira, H. J., Lopez-Serra, P., Carmona, F. J., Martínez-Cardús, A., Girotti, M. R., Villanueva, A., Guil, S., Moutinho, C., Liz, J., Portela, A., Heyn, H., Moran, S., Vidal, A., Martinez-Iniesta, M., Manzano, J. L., Fernandez-Figueras, M. T., Elez, E., Muñoz-Couselo, E., … Esteller, M. (2015). Epigenetic activation of a cryptic TBC1D16 transcript enhances melanoma progression by targeting EGFR. Nature Medicine, 21(7), 741–750. https://doi.org/10.1038/nm.3863
Agrelo, R., Cheng, W.-H., Setien, F., Ropero, S., Espada, J., Fraga, M. F., Herranz, M., Paz, M. F., Sanchez-Cespedes, M., Artiga, M. J., Guerrero, D., Castells, A., von Kobbe, C., Bohr, V. A., & Esteller, M. (2006). Epigenetic inactivation of the premature aging Werner syndrome gene in human cancer. Proceedings of the National Academy of Sciences of the United States of America, 103(23), 8822–8827. https://doi.org/10.1073/pnas.0600645103
Lopez-Serra, P., Marcilla, M., Villanueva, A., Ramos-Fernandez, A., Palau, A., Leal, L., Wahi, J. E., Setien-Baranda, F., Szczesna, K., Moutinho, C., Martinez-Cardus, A., Heyn, H., Sandoval, J., Puertas, S., Vidal, A., Sanjuan, X., Martinez-Balibrea, E., Viñals, F., Perales, J. C., … Esteller, M. (2014). A DERL3-associated defect in the degradation of SLC2A1 mediates the Warburg effect. Nature Communications, 5, 3608. https://doi.org/10.1038/ncomms4608
Rosselló-Tortella, M., Llinàs-Arias, P., Sakaguchi, Y., Miyauchi, K., Davalos, V., Setien, F., Calleja-Cervantes, M. E., Piñeyro, D., Martínez-Gómez, J., Guil, S., Joshi, R., Villanueva, A., Suzuki, T., & Esteller, M. (2020). Epigenetic loss of the transfer RNA-modifying enzyme TYW2 induces ribosome frameshifts in colon cancer. Proceedings of the National Academy of Sciences of the United States of America, 117(34), 20785–20793. https://doi.org/10.1073/pnas.2003358117
Castro de Moura, M., Davalos, V., Planas-Serra, L., Alvarez-Errico, D., Arribas, C., Ruiz, M., Aguilera-Albesa, S., Troya, J., Valencia-Ramos, J., Vélez-Santamaria, V., Rodríguez-Palmero, A., Villar-Garcia, J., Horcajada, J. P., Albu, S., Casasnovas, C., Rull, A., Reverte, L., Dietl, B., Dalmau, D., … Esteller, M. (2021). Epigenome-wide association study of COVID-19 severity with respiratory failure. EBioMedicine, 66, 103339. https://doi.org/10.1016/j.ebiom.2021.103339
Related Episodes
CpG Islands, DNA Methylation, and Disease (Sir Adrian Bird)
Targeting COMPASS to Cure Childhood Leukemia (Ali Shilatifard)
Cancer and Epigenetics (David Jones)
Contact
Active Motif on Twitter
Epigenetics Podcast on Twitter
Active Motif on LinkedIn
Active Motif on Facebook
Email: podcast@activemotif.com
Thursday Feb 10, 2022
Enhancer-Promoter Interactions During Development (Yad Ghavi-Helm)
Thursday Feb 10, 2022
Thursday Feb 10, 2022
In this episode of the Epigenetics Podcast, we caught up with Yad Ghavi-Helm from the Institut de Génomique Functionnelle de Lyon to talk about her work on enhancer-promoter interactions during development.
The Laboratory of Yad Ghavi-Helm focuses on how developmental genes are regulated by enhancers. Their work shows that developmental genes are often regulated by more than one enhancer and that those enhancers can often be located many kilobases away on the linear chromosome. Furthermore, their research also indicates that the interactions between promoters and their respective enhancers are usually established before the expression of the target gene is switched on, and that those interactions are generally stable during embryogenesis. In addition, those stable interactions seem to coincide with paused RNA Pol II being located at those promoters before gene activation.
References
Ghavi-Helm, Y., Michaut, M., Acker, J., Aude, J.-C., Thuriaux, P., Werner, M., & Soutourina, J. (2008). Genome-wide location analysis reveals a role of TFIIS in RNA polymerase III transcription. Genes & Development, 22(14), 1934–1947. https://doi.org/10.1101/gad.471908
Ghavi-Helm, Y., Klein, F. A., Pakozdi, T., Ciglar, L., Noordermeer, D., Huber, W., & Furlong, E. E. M. (2014). Enhancer loops appear stable during development and are associated with paused polymerase. Nature, 512(7512), 96–100. https://doi.org/10.1038/nature13417
Ghavi-Helm, Y., Jankowski, A., Meiers, S., Viales, R. R., Korbel, J. O., & Furlong, E. E. M. (2019). Highly rearranged chromosomes reveal uncoupling between genome topology and gene expression. Nature Genetics, 51(8), 1272–1282. https://doi.org/10.1038/s41588-019-0462-3
Related Episodes
Ultraconserved Enhancers and Enhancer Redundancy (Diane Dickel)
Unraveling Mechanisms of Chromosome Formation (Job Dekker)
Biophysical Modeling of 3-D Genome Organization (Leonid Mirny)
Contact
Active Motif on Twitter
Epigenetics Podcast on Twitter
Active Motif on LinkedIn
Active Motif on Facebook
Email: podcast@activemotif.com
Thursday Jan 27, 2022
The Effect of Vitamin D on the Epigenome (Folami Ideraabdullah)
Thursday Jan 27, 2022
Thursday Jan 27, 2022
In this episode of the Epigenetics Podcast, we caught up with Folami Ideraabdullah from the University of Chapel Hill to talk about her work on the environmental modulation of the epigenome during development.
The lab of Folami Ideraabdullah focuses on studying how environmental factors modulate the epigenome. In particular the team investigates how Vitamin D levels influence epigenetic processes and, hence, the susceptibility for diseases like adipositas. Folami Ideraabdullah started with a genome-wide screen of DNA Methylation patterns that are observed after Vitamin D depletion. This work was then followed up by investigating the impact of Vitamin D depletion on mouse sperm DNA methylation.
References
Xue, J., Schoenrock, S. A., Valdar, W., Tarantino, L. M., & Ideraabdullah, F. Y. (2016). Maternal vitamin D depletion alters DNA methylation at imprinted loci in multiple generations. Clinical Epigenetics, 8(1), 107. https://doi.org/10.1186/s13148-016-0276-4
Xue, J., Gharaibeh, R. Z., Pietryk, E. W., Brouwer, C., Tarantino, L. M., Valdar, W., & Ideraabdullah, F. Y. (2018). Impact of vitamin D depletion during development on mouse sperm DNA methylation. Epigenetics, 13(9), 959–974. https://doi.org/10.1080/15592294.2018.1526027
Xue, J., Hutchins, E. K., Elnagheeb, M., Li, Y., Valdar, W., McRitchie, S., Sumner, S., & Ideraabdullah, F. Y. (2020). Maternal Liver Metabolic Response to Chronic Vitamin D Deficiency Is Determined by Mouse Strain Genetic Background. Current Developments in Nutrition, 4(8), nzaa106. https://doi.org/10.1093/cdn/nzaa106
Related Episodes
Nutriepigenetics: The Effects of Diet on Behavior (Monica Dus)
Epigenetic Influence on Memory Formation and Inheritance (Isabelle Mansuy)
Epigenetic Origins Of Heterogeneity And Disease (Andrew Pospisilik)
Contact
Active Motif on Twitter
Epigenetics Podcast on Twitter
Active Motif on LinkedIn
Active Motif on Facebook
Email: podcast@activemotif.com
Thursday Jan 13, 2022
H3K4me3, Set-Proteins, Isw1 and their Role in Transcription (Jane Mellor)
Thursday Jan 13, 2022
Thursday Jan 13, 2022
In this episode of the Epigenetics Podcast, we caught up with Jane Mellor from the University of Oxford to talk about her work on H3K4me3, SET proteins, Isw1 and their role in transcription.
Since the beginning of the century, Jane Mellor and her team have focused on H3K4 trimethylation and the factors that influence this mark. They discovered that H3K4me3 is an almost universal mark of the first nucleosome in every transcribed unit and all organisms. She could subsequently, together with the Kouzarides lab, identify SetD1, the enzyme that is responsible for writing this modification. Later on, the team characterized Isw1, a chromatin remodeler which “reads” H3K4me3. More recently the lab focuses on how the polymerase transcribes throughout the first nucleosomes of the transcribed region at the +2 nucleosome, with the help of Spt4.
References
Santos-Rosa, H., Schneider, R., Bannister, A. J., Sherriff, J., Bernstein, B. E., Emre, N. C. T., Schreiber, S. L., Mellor, J., & Kouzarides, T. (2002). Active genes are tri-methylated at K4 of histone H3. Nature, 419(6905), 407–411. https://doi.org/10.1038/nature01080
Morillon, A., O’Sullivan, J., Azad, A., Proudfoot, N., & Mellor, J. (2003). Regulation of Elongating RNA Polymerase II by Forkhead Transcription Factors in Yeast. Science, 300(5618), 492–495. https://doi.org/10.1126/science.1081379
Morillon, A., Karabetsou, N., O’Sullivan, J., Kent, N., Proudfoot, N., & Mellor, J. (2003). Isw1 Chromatin Remodeling ATPase Coordinates Transcription Elongation and Termination by RNA Polymerase II. Cell, 115(4), 425–435. https://doi.org/10.1016/S0092-8674(03)00880-8
Uzun, Ü., Brown, T., Fischl, H., Angel, A., & Mellor, J. (2021). Spt4 facilitates the movement of RNA polymerase II through the +2 nucleosomal barrier. Cell Reports, 36(13), 109755. https://doi.org/10.1016/j.celrep.2021.109755
Related Episodes
Effects of Non-Enzymatic Covalent Histone Modifications on Chromatin (Yael David)
Nutriepigenetics: The Effects of Diet on Behavior (Monica Dus)
Epigenetic Origins Of Heterogeneity And Disease (Andrew Pospisilik)
Contact
Active Motif on Twitter
Epigenetics Podcast on Twitter
Active Motif on LinkedIn
Active Motif on Facebook
Email: podcast@activemotif.com
Thursday Dec 16, 2021
The role of DNA Methylation in Epilepsy (Katja Kobow)
Thursday Dec 16, 2021
Thursday Dec 16, 2021
In this episode of the Epigenetics Podcast, we caught up with Katja Kobow from the Universitätsklinikum Erlangen to talk about her work on the role of DNA methylation in Epilepsy.
Katja Kobow started studying the role of Epigenetics in Epilepsy by doing a genome wide Bisulfite-Sequencing screen that revealed a typical DNA methylation signature of epileptic patients versus healthy controls. After these initial results in human patient samples, she switched to an animal model to investigate this further. Now the focus of the Kobow Lab is to look for the same DNA methylation signature in blood samples, using this as a basis for the development of a potential prognostic marker for Epilepsy.
References
Jablonski, Janos, Lucas Hoffmann, Ingmar Blümcke, Anna Fejtová, Steffen Uebe, Arif B. Ekici, Vadym Gnatkovsky, and Katja Kobow. 2021. “Experimental Epileptogenesis in a Cell Culture Model of Primary Neurons from Rat Brain: A Temporal Multi-Scale Study.” Cells 10(11):3004. doi: 10.3390/cells10113004.
Jablonski, Janos, Lucas Hoffmann, Ingmar Blümcke, Anna Fejtová, Steffen Uebe, Arif B. Ekici, Vadym Gnatkovsky, and Katja Kobow. 2021. “Experimental Epileptogenesis in a Cell Culture Model of Primary Neurons from Rat Brain: A Temporal Multi-Scale Study.” Cells 10(11):3004. doi: 10.3390/cells10113004.
Kobow, Katja, Mark Ziemann, Harikrishnan Kaipananickal, Ishant Khurana, Angelika Mühlebner, Martha Feucht, Johannes A. Hainfellner, Thomas Czech, Eleonora Aronica, Tom Pieper, Hans Holthausen, Manfred Kudernatsch, Hajo Hamer, Burkhard S. Kasper, Karl Rössler, Valerio Conti, Renzo Guerrini, Roland Coras, Ingmar Blümcke, Assam El‐Osta, and Antony Kaspi. 2019. “Genomic DNA Methylation Distinguishes Subtypes of Human Focal Cortical Dysplasia.” Epilepsia 60(6):1091–1103. doi: 10.1111/epi.14934.
Dębski, Konrad J., Asla Pitkanen, Noora Puhakka, Anna M. Bot, Ishant Khurana, Kn Harikrishnan, Mark Ziemann, Antony Kaspi, Assam El-Osta, Katarzyna Lukasiuk, and Katja Kobow. 2016. “Etiology Matters – Genomic DNA Methylation Patterns in Three Rat Models of Acquired Epilepsy.” Scientific Reports 6(1):25668. doi: 10.1038/srep25668.
Kobow, Katja, Antony Kaspi, K. N. Harikrishnan, Katharina Kiese, Mark Ziemann, Ishant Khurana, Ina Fritzsche, Jan Hauke, Eric Hahnen, Roland Coras, Angelika Mühlebner, Assam El-Osta, and Ingmar Blümcke. 2013. “Deep Sequencing Reveals Increased DNA Methylation in Chronic Rat Epilepsy.” Acta Neuropathologica 126(5):741–56. doi: 10.1007/s00401-013-1168-8.
Related Episodes
CpG Islands, DNA Methylation, and Disease (Sir Adrian Bird)
Effects of DNA Methylation on Chromatin Structure and Transcription (Dirk Schübeler)
Effects of DNA Methylation on Diabetes (Charlotte Ling)
Contact
Active Motif on Twitter
Epigenetics Podcast on Twitter
Active Motif on LinkedIn
Active Motif on Facebook
Email: podcast@activemotif.com
Thursday Dec 02, 2021
MacroH2A Function in Development and Disease (Emily Bernstein)
Thursday Dec 02, 2021
Thursday Dec 02, 2021
In this episode of the Epigenetics Podcast, we caught up with Emily Bernstein from Icahn Schoon of Medicine at Mount Sinai to talk about her work on MacroH2A function and the role of Polycomb proteins in its epigenetic regulation, and how this affects in stem cell development and disease.
The Bernstein Lab focuses on histone variants, in particular the H2A variant macroH2A. Chromatin architecture is influenced by the composition of the nucleosome and, hence, exchanging the core histones for histone variants can have a major impact on chromatin structure. MacroH2A variantsare the most unique histone variants due to a 30kDa non-histone domain (macro domain) at their C-termini. This macro domain likely confers important functions to macroH2A variants, which have important regulatory roles in the cell. Among other things, the Bernstein Lab has shown that macroH2A is enriched at a critical set of Utx target genes whose expression is critical for the early stages of induced pluripotency, and that macroH2A plays a role as a barrier to tumorigenesis.
References
Kapoor, A., Goldberg, M. S., Cumberland, L. K., Ratnakumar, K., Segura, M. F., Emanuel, P. O., Menendez, S., Vardabasso, C., LeRoy, G., Vidal, C. I., Polsky, D., Osman, I., Garcia, B. A., Hernando, E., & Bernstein, E. (2010). The histone variant macroH2A suppresses melanoma progression through regulation of CDK8. Nature, 468(7327), 1105–1109. https://doi.org/10.1038/nature09590
Vardabasso, C., Gaspar-Maia, A., Hasson, D., Pünzeler, S., Valle-Garcia, D., Straub, T., Keilhauer, E. C., Strub, T., Dong, J., Panda, T., Chung, C.-Y., Yao, J. L., Singh, R., Segura, M. F., Fontanals-Cirera, B., Verma, A., Mann, M., Hernando, E., Hake, S. B., & Bernstein, E. (2015). Histone Variant H2A.Z.2 Mediates Proliferation and Drug Sensitivity of Malignant Melanoma. Molecular Cell, 59(1), 75–88. https://doi.org/10.1016/j.molcel.2015.05.009
Sun, Zhen, Dan Filipescu, Joshua Andrade, Alexandre Gaspar-Maia, Beatrix Ueberheide, and Emily Bernstein. 2018. “Transcription-Associated Histone Pruning Demarcates MacroH2A Chromatin Domains.” Nature Structural & Molecular Biology 25(10):958–70. doi: 10.1038/s41594-018-0134-5.
Related Episodes
Influence of Histone Variants on Chromatin Structure and Metabolism (Marcus Buschbeck)
Regulation of Chromatin Organization by Histone Chaperones (Geneviève Almouzni)
Variants of Core Histones: Modulators of Chromatin Structure and Function (Sandra Hake)
Contact
Active Motif on Twitter
Epigenetics Podcast on Twitter
Active Motif on LinkedIn
Active Motif on Facebook
Email: podcast@activemotif.com